Question

The temperature at a point (x, y) on a metallic floor is $T(x, y) = 4x^2 - 4xy + y^2$. Wearing thermocouple shoes that measures temperature, you walk along a circle of radius 5 centered at the origin on the metallic floor. What are the highest and lowest temperatures measured by your shoes?

Solution:

A Lagrange Multiplier

The target:
$$
T(x_2,y) = 4x^2 - 4xy + y^2 \Rightarrow Tx = 8x - 4y
$$
, $Ty = -4x + 2y$
The Construct: $g(x,y) = x^2 + y^2 - 25 = 0 \Rightarrow g_x = 2x$, $g_y = 2y$

By the method of Lagrange Multiplier,
\n
$$
\begin{cases}\n8x-4y = 3 \cdot 2x \\
-4x + y = 3 \cdot 2y \implies 4x - 2y = 3 \cdot (-2y) \\
x^2 + y^2 - 25 = 0\n\end{cases}
$$
\n
$$
\begin{cases}\n4x - 2y = 3 \cdot (-2y) \\
x^2 + y^2 = 25\n\end{cases}
$$
\n
$$
\begin{cases}\n3x - 2y = 3 \cdot (-2y) \\
y = 3 \cdot 2x + 2y = 0 \\
y = 3 \cdot 20 \text{ or } x = -2y\n\end{cases}
$$

 $Sub \geq 0$ into $\overline{0}$, $4x - 2y = 0 \Rightarrow y = 2x$

Putting then together,
$$
x = -2y
$$
 or $y = 2x$
\nMethod I.
\nCase1. Sub $x = -2y$ into $3 \Rightarrow (-2y)^2 + y^2 = 25 \Rightarrow 5y^2 = 85 \Rightarrow y^2 = 5$
\n
$$
\Rightarrow \begin{cases} x = -2\sqrt{5} \\ y = \sqrt{5} \end{cases} \text{ or } \begin{cases} x = 2\sqrt{5} \\ y = -\sqrt{5} \end{cases}
$$
\nCase2. Sub $y = 2x$ into $3 \Rightarrow x^2 + (2x)^2 = 25 \Rightarrow 5x^2 = 8 \Rightarrow x^2 = 5$
\n
$$
\Rightarrow \begin{cases} x = \sqrt{5} \\ y = 2\sqrt{5} \end{cases} \text{ or } \begin{cases} x = -\sqrt{5} \\ y = -2\sqrt{5} \end{cases}
$$

(1) Sub
$$
x = -2\sqrt{5}
$$
, $y = \sqrt{5}$ into $T(x, y)$,
\n $T(x, y) = 4x^2 - 4xy + y^2 = (2x - y)^2 = (-4\sqrt{5} - \sqrt{5})^2 = (-8\sqrt{5})^2 = 25 \times 5 = 125$

$$
\begin{array}{lll} \text{(2)} & \text{Sub} & \text{x=2}[5 \text{ , } y=-\sqrt{5} \text{ into } T \text{ (x, y)},\\ & \text{Thus } T \text{(x, y)} &= (2x - y)^2 &= \left(4\sqrt{5} + \sqrt{5}\right)^2 = \left(5\sqrt{5}\right)^2 = /25 \end{array}
$$

(3) Sub
$$
x=35
$$
, $y = 235$ into $1(x, y)$,
\n
$$
T(x,y) = (2x - y)^2 = 0
$$
\n(4) Sub $x = \sqrt{5}$, $y = -2\sqrt{5}$ into $T(x, y)$
\n
$$
T(x,y) = (2x - y)^2 = 0
$$

Hence, the highest temperature is 125, and the lowest one is 0

Method 2. Short cut

Recall:

from the equation ω and ω , we get $x = -2y$ or $y = 2x$. Case 1. Sub $\gamma = -3y$ into $\textcircled{3}$, $(-2y)^2 + y^2 = 25 \Rightarrow y^2 = 5$ $T(x,y) = 4x^2 - 4xy + y^2$ $= (2x - y)^2$ $= (2.(-2y) - y)^2$ $= 25$ $² = 25$ \times 5 = 125.</sup>

ase2. Sub $y = 2x$ into (3) , $x^2 + (2x)^2 = x \Rightarrow x^2 = 5$ $T(x, y) = 4x^2 - 4xy + y^2$ $=$ $(2x-y)^2$ $=$ $($ $y - y)^2$ $=$ 0.

***** Remark:

Result 1.8A

The maximum/minimum value of $f(x, y)$ subject to the constraint $g(x, y) = 0$ occurs at a point (x, y) that satisfies the following three equations

$$
f_x = \lambda g_x
$$

\n
$$
f_y = \lambda g_y
$$

\n
$$
g(x, y) = 0
$$

\n
$$
u = 0
$$

for some constant λ , called a **Lagrange mu**

1 Parametric Equation.

The target:
$$
T(x, y) = 4x^2 - 4xy + y^2
$$

The Construct: $g(x, y) = x^2 + y^2 - 25 = 0$

The parametric equatrion for $\begin{cases} x = 5 \cos \theta \\ y = 5 \sin \theta \end{cases}$,

and then sub into \n ,

$$
T(x,y) = (2x - y)^{2} = (10cos\theta - 5sin\theta)^{2}
$$

\n
$$
= (5 \cdot (2 \cos\theta - \sin\theta))^{2} \cos(\theta + \alpha), \ \theta = tan^{-1}(\frac{1}{2})
$$

\n
$$
\frac{d}{dx} \cos\theta - \beta \sin\theta = \sqrt{A^{2} + B^{2}} \cdot \cos(\theta + \alpha)
$$

\n
$$
= 25 \cdot 5 \cdot 68 \cdot 64 + \alpha
$$

\n
$$
= 25 \cdot 5 \cdot 68 \cdot 64 + \alpha
$$

\n
$$
= 25 \cdot 5 \cdot 68 \cdot 64 + \alpha
$$

\n
$$
= 25 \cdot 5 \cdot 68 \cdot 64 + \alpha
$$

 $-1 \leq OS$ $(\Theta + \alpha) \leq 1 \implies o \leq OS^{2}(\Theta + \alpha) \leq 1 \implies OS$ $T(x, y) \leq 125$

5 Geometric Intepretation $J(x,y) = (2x - y)^2$ is maximized/minimized (=) $|3x-y|$ is maximized/minimized \Leftrightarrow $\frac{|2x-y|}{\sqrt{5}} = d$ is maximized/minimized
 $\frac{\sqrt{5}}{\sqrt{5}}$, which is the distance d between the point $P(x, y)$ and the line $\int 2x - y = c$. Equivalently, we can investigate the above distance when p satisfies $x^2 + y^2 - 25 = 0$ $1: 2x - 1 = 0$ By inspection, d_{max} = radius=5 (at c, D) .
Pix,y) $dmin = 0$ (at A, B)

$$
\frac{1}{x}
$$
 \Rightarrow $\frac{1}{x}$ \Rightarrow $\frac{1$