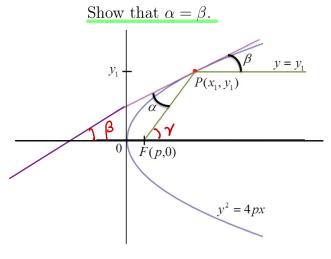
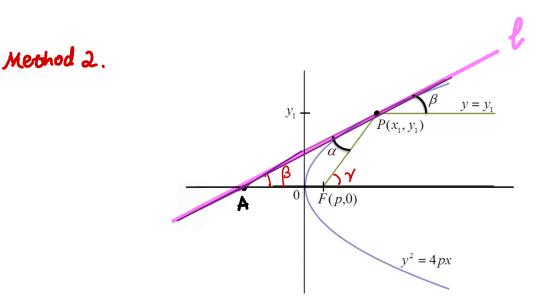
Question:

Let $P(x_1, y_1)$ be a point on the curve $y^2 = 4px$. This shape is called a parabola. The parabola and its tangent at point P are drawn on the diagram below. Let F(p, 0) be a point on the x-axis. Let β be the (acute) angle between $y = y_1$ and the tangent of the parabola. Let α be the (acute) angle between FP and the tangent of the parabola.



Solution

Recall:
$$\tan \beta = \tan \beta$$
 radiant of tangent line to the curve $y^2 = 4px$ as the
the points $p(x_1, y_1) = y^1 \Big|_{x=x_1, y=y_1}$
Since $2y \cdot y' = 4p \Rightarrow y' = \frac{2p}{y'}$, $\Rightarrow \tan \beta = y^1 \Big|_{x=x_1, y=y_1} = \frac{2p}{y_1}$
Since $Y = d + \beta$, $\Rightarrow \tan Y = \tan(d + \beta) = \frac{\tan d + \tan \beta}{1 - \tan \alpha \cdot \tan \beta}$
In the meantime, $\tan Y = \frac{y_p - y_p}{x_p - x_p} = \frac{y_1 - 0}{x_1 - p} = \frac{y_1}{x_1 - p}$
 $\Rightarrow \frac{y_1}{\pi_1 - p} = \frac{\tan \alpha + \frac{2p}{y_1}}{1 - \tan \alpha \cdot \frac{2p}{y_1}} \cdot (x_1 - p)$
 $= (x_1 - p) \tan d + \frac{2px_1}{y_1} - \frac{2px_1}{y_1} - \frac{2px_1}{y_1}$
 $\Rightarrow \tan d = \frac{y_1 - 2px_1 + \frac{2p^2}{y_1}}{x_1 + p} = \frac{(y_1 - 2px_1 + 2p^2)}{y_1(x_1 + p)}$
Since $0 < d$, $\beta < \frac{\pi}{2}$, then $= \frac{2p(x_1 + 2p^2)}{y_1(x_1 + p)}$.



From Method /,

the equation of the tangent line l is $y - y_1 = \frac{2P}{y_1} (x_0 - x_1)$ Let y = 0, $0 - y_1 = \frac{2P}{y_1} (x - x_1)$ $\frac{-y_1^2}{2P} = x - x_1$ $\Rightarrow x = -\frac{y_1^2}{2P} + x_1$ Since $P(x_1, y_1)$ is one point on the parabola, $y_1^2 = 4Px_1 \Rightarrow -\frac{y_1^2}{2P} = -\frac{4Px_1}{2P} = -2x_1$ $\Rightarrow x_1 = -2x_1 + x_1 = -x_1$ \Rightarrow the point $A(-x_1, 0)$

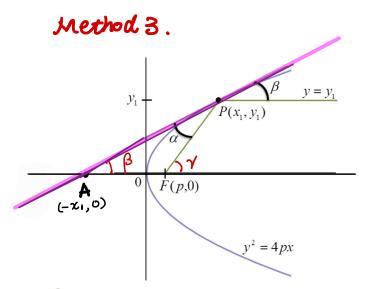
$$|AF| = |P - (-\chi_1) = P + \chi_1$$

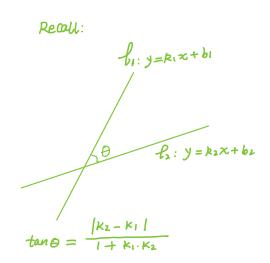
$$|FP| = \sqrt{(y_1 - 0)^2 + (\chi_1 - P)^2} = \sqrt{(\chi_1 - P)^2 + y_1^2}$$

$$\Rightarrow |FP|^2 = (\chi_1 - P)^2 + y_1^2 = (\chi_1 - P)^2 + 4P\chi_1 = \chi_1^2 - 2P\chi_1 + P^2 + 4P\chi_1$$

$$= (\chi_1 + P)^2 = |AF|^2$$

$$\Rightarrow |AF| = |FP| \Rightarrow \Delta AFP \text{ is an isosceles triangle} \Rightarrow \Delta = \beta$$





Solution:

Since the gradient / slope of tangent line
$$\int_{1}^{1} = \tan \beta = \frac{2P}{3!} = k_{AP}$$
.
 $k_{FP} = \frac{y_{1} - \sigma}{z_{1} - p} = \frac{y_{1}}{z_{1} - p}$
 $tan d = \frac{|k_{AP} - k_{PP}|}{1 + k_{AP} \cdot k_{PP}} = \frac{\left|\frac{2P}{3!} - \frac{y_{1}}{z_{1} - P}\right|}{1 + \frac{2P}{3!} \cdot \frac{y_{1}}{z_{1} - P}} \cdot \frac{y_{1}(x_{1} - P)}{y_{1}(x_{1} - P)}$
 $= \frac{|2P(z_{1}, -p) - y_{1}^{2}|}{y_{1}(z_{1} - P) + 2Py_{1}}$
 $= \frac{|2P(z_{1}, -p) - y_{1}^{2}|}{y_{1}(z_{1} - P + 2P)}$
 $= \frac{(-2Pz_{1}, -2P^{2} - y_{1}^{2})}{y_{1}(z_{1} - P + 2P)}$
 $= \frac{(-2Pz_{1}, -2P^{2})}{y_{1}(z_{1} + P)} \quad (z_{1}z_{0}, P) = 0$
 $= \frac{2P(z_{1} + P)}{y_{1}(z_{1} + P)} = \frac{2P}{y_{1}} = \tan \beta$
Since $0 \le d$, $\beta \le \frac{\pi}{2}$, tand $z \tan \beta$, then
 $z = \beta$.